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Abstract

From bacteria to mammalian cells, damaged DNA is sensed and
targeted by DNA repair pathways. In eukaryotes, kinases play a
central role in coordinating the DNA damage response. DNA
damage signaling kinases were identified over two decades ago
and linked to the cell cycle checkpoint concept proposed by Wein-
ert and Hartwell in 1988. Connections between the DNA damage
signaling kinases and DNA repair were scant at first, and the initial
perception was that the importance of these kinases for genome
integrity was largely an indirect effect of their roles in checkpoints,
DNA replication, and transcription. As more substrates of DNA
damage signaling kinases were identified, it became clear that
they directly regulate a wide range of DNA repair factors. Here, we
review our current understanding of DNA damage signaling
kinases, delineating the key substrates in budding yeast and
humans. We trace the progress of the field in the last 30 years and
discuss our current understanding of the major substrate regula-
tory mechanisms involved in checkpoint responses and DNA repair.
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Introduction

From pathway to network
In eukaryotes, kinases play a central role in the DNA damage

response, from sensing DNA damage to regulating cellular

processes. Work in yeast and mammalian systems in the 1990s

identified an evolutionarily conserved set of DNA damage signal-

ing kinases, including phosphatidylinositol 30 kinase (PI3K)-related

kinases (PIKKs) and PIKK-regulated downstream kinases. These

kinases were found to be involved in cell cycle control (Allen et al,

1994; Carr, 1995; Morrow et al, 1995; Savitsky et al, 1995; Cimprich

et al, 1996; Furnari et al, 1997; Peng et al, 1997; Sanchez et al,

1997) and were linked to the “cell cycle checkpoint” concept

proposed by Weinert and Hartwell (Weinert & Hartwell, 1988;

Hartwell & Weinert, 1989). Subsequent work in the late 1990s and

early 2000s revealed how these kinases establish the checkpoint and

control processes beyond the cell cycle, such as apoptosis, transcrip-

tion, and DNA replication (Santocanale & Diffley, 1998; Sun et al,

1998; Zhou & Elledge, 2000). In 2007, the use of mass spectrometry

(MS)-based proteomics allowed a more systematic analysis of the

network of phosphorylation events triggered by DNA damage

signaling kinases (Matsuoka et al, 2007; Smolka et al, 2007). As a

result, the perception that DNA damage signaling kinases operate

within a simple signaling pathway (Fig 1; the classical “linear”

depiction of DNA damage signaling) evolved to a more comprehen-

sive view in which DNA damage signaling kinases function in an

elaborate signaling network comprised of hundreds of substrates.

From checkpoint to DNA repair
After the discovery of DNA damage signaling kinases, mechanistic

links between these kinases and the DNA repair machinery were

virtually non-existent. It was not immediately appreciated that these

kinases directly target and regulate the DNA repair machinery. Now

that dozens of DNA repair proteins have been shown to be phospho-

rylated by DNA damage signaling kinases, there is little doubt that

active and direct control of the DNA repair machinery is a core func-

tion of DNA damage signaling kinases. However, the precise mecha-

nisms by which these kinases control the action of these substrates

remain incompletely understood and represent a significant knowl-

edge gap in the field. Here, we review our current understanding of

the integrated action of DNA damage signaling kinases. We delin-

eate the key substrates for checkpoint and DNA repair in budding

yeast and highlight the potential parallels in humans. Based on the

accumulated knowledge of the mechanisms of substrate regulation,

we discuss how our understanding of the action of DNA damage

signaling kinases in genome maintenance has evolved over the last

30 years.

DNA damage signaling kinases

DNA damage signaling kinases have been traditionally categorized

as either apical or effector kinases. The apical PIKKs, or ATR, ATM,

and DNA-PKcs in mammals and Mec1 and Tel1 in budding yeast

(Fig 1; see Table 1 for gene name overview in model organisms),
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associate with DNA structures that form as byproducts of DNA

damage or replication stress, including single-strand DNA (ssDNA)

and broken DNA ends (Fig 1). In the canonical mode of action,

Mec1/ATR is recruited to ssDNA, whereas Tel1/ATM and DNA-

PKcs associate with the ends of double-strand DNA (dsDNA) breaks.

The mechanism of activation for each of these kinases is different,

but recruitment to damaged DNA is often a requirement (for details

on the mechanism of how kinases associate with DNA structures, as

well as co-factors involved, refer to the following reviews: Blackford

& Jackson, 2017; Di Domenico et al, 2014; Saldivar et al, 2017; Zou,

2013). Activated apical kinases transfer stimulatory phosphorylation

to the downstream checkpoint kinases (Rad53, Chk1, and Dun1 in

yeast; CHK2 and CHK1 in mammals), which catalyze phosphoryla-

tion events that mediate cellular responses to DNA damage as part

of the canonical DNA damage checkpoint (Fig 1). Whereas Rad53

mediates nearly all checkpoint-related functions in budding yeast,

with Chk1 playing only a minor role (Sanchez et al, 1999), a more

balanced division of labor exists for CHK1 and CHK2 in humans.

Human CHK2 shares sequence and structural similarities with yeast

Rad53, including an FHA domain (Matsuoka et al, 1998), but the

functional similarities are limited to the DSB signaling response.

Human CHK1 and yeast Rad53 play a crucial role in the replication

stress response, but they share little or no sequence/structural

similarity.

Adaptor proteins as substrates for downstream signaling activation
In budding yeast, the transfer of phosphorylation from apical to

downstream checkpoint kinases requires the checkpoint adaptor

proteins Rad9 and Mrc1, which recruit the downstream checkpoint

kinases in proximity to the apical kinase. Mec1 and Tel1 promote

the recruitment of the Rad9 adaptor by phosphorylating lesion-prox-

imal substrates, such as histone H2A (Downs et al, 2000) and the 9-

1-1 complex (Paciotti et al, 1998), which are then recognized

directly or indirectly by Rad9 (Fig 2; Toh et al, 2006; Hammet et al,

2007; Pfander & Diffley, 2011). Once recruited, Rad9 is phosphory-

lated by Mec1 or Tel1 (Emili, 1998; Vialard et al, 1998), which

promotes its oligomerization (Soulier & Lowndes, 1999; Usui et al,

2009) and further stabilization on DNA (Naiki et al, 2004). Mec1-

and Tel1-mediated phosphorylation of Rad9 creates docking sites

for the recruitment of the downstream effector kinase Rad53 (Fig 2;

Gilbert et al, 2001; Schwartz et al, 2002; Sun et al, 1998), which,

upon recruitment to Rad9, is phosphorylated and activated by Mec1

or Tel1 (Sanchez et al, 1996; Sun et al, 1996). Chk1 also relies on

Rad9 for its activation by Mec1 (Blankley & Lydall, 2004); however,

unlike Rad53, the phosphorylation events that facilitate the recruit-

ment of Chk1 to Rad9 are catalyzed by cyclin-dependent kinase

(CDK; Fig 2; Abreu et al, 2013). Rad53 can also be activated via the

Mrc1 adaptor (Alcasabas et al, 2001; Osborn & Elledge, 2003).

Mrc1, being an intrinsic component of the replisome, is already “on-

site” for mediating activation, obviating the need for a devoted

recruitment mechanism, as is the case with Rad9. In fact, Mrc1

mediates a more rapid response to replication stress than Rad9-

dependent DNA damage signaling (Pardo et al, 2017; Bacal et al,

2018). Similar to Rad9 and Mrc1, Sgs1 has been proposed to medi-

ate Rad53 recruitment in a manner that depends upon its phospho-

rylation by Mec1 (Hegnauer et al, 2012). Mec1 and Tel1 also

facilitate DNA damage signaling activation and propagation by

recruiting chromatin modifiers and remodelers near sites of DNA

damage (van Attikum et al, 2004; Downs et al, 2004; Morrison et al,

2004, 2007), which may help de-condense chromatin in a way that

permits adaptor assembly.

Similar as in yeast, vertebrate ATM and ATR utilize checkpoint

adaptor proteins to mediate their transfer of phosphorylation to the

checkpoint effector kinases. ATR primarily relies on Claspin, the

homolog of yeast Mrc1, to mediate the activation of CHK1 (Kumagai

& Dunphy, 2000). Like Mrc1, Claspin associates with the replisome

(Lee et al, 2003) and recruits CHK1 upon exposure to replication

stress. Also similar to yeast, the Claspin–CHK1 interaction depends

on ATR activity (Kumagai & Dunphy, 2003; Lindsey-Boltz et al,

2009). While it is currently unknown whether mammalian ATR

directly phosphorylates Claspin, Xenopus ATR has been shown to

directly phosphorylate Claspin at threonines 817 and 819, which are

critical for CHK1 recruitment (Fig 2; the uncertainty of ATR’s direct

phosphorylation of Claspin in humans is denoted by “?”; Yoo et al,

2006; in-depth discussion of the similarities and differences between

Claspin orthologs can be found here: Smits et al, 2019). Once bound

to CHK1, Claspin is thought to both stabilize CHK1 and tether it in

proximity to ATR, allowing for extensive phosphorylation and full

activation of the effector kinase (Liu et al, 2006). While ATR utilizes

Claspin to facilitate its phosphorylation of CHK1, the phosphoryla-

tion of many other ATR substrates does not require Claspin,

suggesting that, like in yeast, the adaptor proteins are primarily

responsible for facilitating Mec1/ATR’s phosphorylation of the

effector kinases and are not required for the phosphorylation of

other substrates (like many of those depicted below in Fig 4).

Two mammalian adaptors have been linked to the ATM–CHK2

signaling axis: MDC1 and 53BP1. Despite extensive research on

these proteins, it remains unclear precisely how they function in

transducing ATM signaling toward CHK2 activation. While 53BP1 is

the functional ortholog of yeast Rad9, MDC1 also shares functional

similarities with Rad9 in the context of the DNA damage signaling

response. Similar to Rad9, MDC1 possesses BRCT domains that

directly bind to phosphorylated histone H2AX (Fig 2; cH2AX; analo-
gous to histone H2A phosphorylated at the C-terminal SQ site in

yeast; Stucki et al, 2005). Once associated with cH2AX at DNA

Glossary

BER Base excision repair
BIR Break-induced replication
CDK Cyclin-dependent kinase
DDK Dbf4-dependent kinase
dNTP deoxyribonucleotide
GCR Gross chromosomal rearrangement
HR Homologous recombination
ICL Interstrand crosslink
IR Ionizing radiation
MMR Mismatch repair
NER Nucleotide excision repair
NHEJ Non-homologous end joining
PIKK PI3 kinase-related kinase
RNR Ribonucleotide reductase
SAC Spindle assembly checkpoint
SDSA Synthesis-dependent strand annealing
SSA Single-strand annealing
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breaks, MDC1 is phosphorylated by ATM and contributes to CHK2

activation (Goldberg et al, 2003; Peng & Chen, 2003; Stewart et al,

2003; Wu et al, 2008). MDC1 has also been shown to be important

for CHK1 activation through its interaction with the TOPBP1 scaf-

fold (Wang et al, 2011; Leung et al, 2013), which may functionally

resemble the Rad9–Dpb11 interaction in budding yeast (Fig 2).

ATM promotes the recruitment of 53BP1 through two distinct

mechanisms. Similar to yeast Rad9, 53BP1 recognizes cH2AX
through its C-terminal pair of BRCT domains (Fig 2), an interaction

which has been controversial, but has recently gained additional

support (Baldock et al, 2015; Kleiner et al, 2015). Nonetheless, the

prominent mechanism of 53BP1 recruitment to DNA breaks

involves ATM- and cH2AX-mediated recruitment of MDC1, which

becomes phosphorylated by ATM and recruits the E3 ubiquitin

ligases RNF8 and RNF168, leading to ubiquitylation of H2A that

is recognized directly by 53BP1 (Fig 2; for a detailed review,

Hustedt & Durocher, 2016). Notably, this ubiquitylation-dependent

recruiting mechanism is absent in budding yeast. Consistent with an

adaptor function for 53BP1, it interacts with CHK2, and the loss of

53BP1 results in reduced ATM-mediated phosphorylation of CHK2

in response to low doses of ionizing radiation (IR; Wang et al,

2002). However, 53BP1 appears to regulate activation of the check-

point through a more complex mechanism, as the physical interac-

tion between CHK2 and 53BP1 rapidly decreases upon IR radiation

rather than becoming stabilized (Wang et al, 2002), in contrast to

the Rad9–Rad53 interaction, which increases after DNA damage in

budding yeast. Both 53BP1 and Rad9 play a key role in the control

of DNA end resection, highlighting the connection and coordination

between checkpoint signaling and the regulation of DNA repair (dis-

cussed in detail later in this review; Lazzaro et al, 2008; Bunting

et al, 2010; Chapman et al, 2013; Zimmermann et al, 2013; Ferrari

et al, 2015; Liu et al, 2017). In both cases, phosphorylation of

Rad9/53BP1 by Mec1 or Tel1 in yeast or ATM in humans is essential

for suppressing DNA end resection (Bothmer et al, 2011; Ferrari
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Figure 1. DNA damage signaling via PIKKs and checkpoint kinases in budding yeast and humans.
DNA damage signaling is initiated at DNA structures that form during DNA damage or replication stress, including single-strand DNA (ssDNA) and broken DNA ends. The apical
PIKKs are recruited to these structures and become activated to initiate downstream signaling. Mec1/ATR is recruited to RPA-coated ssDNA, while Tel1/ATM and DNA-PKcs
initially associate with DNA ends formed by double-strand breaks. Adaptor proteins are often required to mediate the transfer of phosphorylation from apical to downstream
checkpoint kinases. Apical and downstream checkpoint kinases function coordinately to mediate cellular responses to DNA damage, either directly or through the regulation
of additional downstream kinases. PIKKs also target an extensive network of substrates independently of downstream checkpoint kinases.
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et al, 2015), and it is possible that 53BP1’s function in preventing

resection contributes to the stabilization of ATM at breaks, which

may indirectly promote ATM–CHK2 signaling.

Post-recruitment events in downstream checkpoint
kinase activation
Recruitment to sites of DNA lesions via checkpoint adaptors

enables the downstream checkpoint kinases to be directly phos-

phorylated by the upstream PIKKs, triggering initial kinase activa-

tion and subsequent autophosphorylation for further kinase

activation. In the case of Rad53, for example, initial phosphoryla-

tion by Mec1 or Tel1 promotes its kinase activity by interfering

with a kinase auto-inhibitory domain (Fiorani et al, 2008), which

then stimulates Rad53 to phosphorylate other Rad9-bound Rad53

molecules (Jia-Lin Ma & Stern, 2008). Such trans-autophosphoryla-

tion events contribute to dissociate Rad53 from Rad9 and prevent

further Rad9 oligomerization (Usui et al, 2009). Notably, overex-

pression of Rad53 in bacteria cells, which lack PIKKs and check-

point adaptors, results in hyper-activated Rad53 (Gilbert et al,

2001). This finding supports a model whereby increased local

concentration of Rad53 is enough for activation, with adaptors

building increased local concentration at the site of lesions and

PIKKs facilitating the initial trigger by reducing the minimal

concentration threshold required for activation. In mammals, the

apical kinases ATR and ATM drive the key events leading to acti-

vation of CHK1 and CHK2, respectively. ATR- and ATM-mediated

phosphorylation not only recruits CHK1 and CHK2 to sites of DNA

lesions, but also directly phosphorylates these downstream kinases

to promote their activation. Like in yeast, these priming phospho-

rylation events are mainly required to relieve inhibitory domains

or to drive monomer-to-oligomer kinase transition (reviewed in

Bartek & Lukas, 2003). ATM-mediated phosphorylation of CHK2 at

threonine 68, an established marker of CHK2 activation, allows for

the dimerization of two inactive CHK2 monomers and for their

subsequent trans- and cis-phosphorylation (Ahn et al, 2000; Xu

et al, 2002; Schwarz et al, 2003). CHK2 dimerization is a transient

state, since the multiple trans- and cis-autophosphorylation events

promote rapid dimer dissociation, leading to full active monomers

(Ahn & Prives, 2002; Xu et al, 2002; Cai et al, 2009). Similar to

CHK2, CHK1 activation is a multistep process that requires ATR

phosphorylation at serine 317 and serine 345; however, unlike

Rad53 or CHK2, CHK1 activation does not appear to involve

dimerization or oligomerization (Liu et al, 2000; Zhao & Piwnica-

Worms, 2001).

Substrates mediating the core DNA damage
signaling responses

Once activated, DNA damage signaling kinases mediate hallmark

responses that include the arrest of the cell cycle, inhibition of origin

firing, protection and restart of stalled replication forks, induction of

a transcriptional response, initiation of apoptosis, and control of

dNTP levels. More recent work has demonstrated that the DNA

damage signaling kinases also regulate a range of other processes,

such as autophagy, gene gating, chromosome mobility, transcrip-

tion–replication conflicts, and many more whose mechanistic

connections to DNA damage signaling and degrees of conservation

across eukaryotes remain less clear. Here, we focus on a select set

of core conserved functions of the DNA damage signaling kinases

with defined substrates, delineating the parallels between budding

yeast and humans (Fig 3).

Cell cycle control
The most classical and widely known function of DNA damage

signaling kinases is the imposition of a cell cycle arrest that

prevents entry into mitosis. Exactly how this arrest is imposed in

budding yeast remains elusive. The paradigm for how cell cycle

arrest occurs comes from a series of works conducted in fission

yeast and metazoans in 1997 (Furnari et al, 1997; Peng et al,

1997; Sanchez et al, 1997; Weinert, 1997), which revealed that

DNA damage signaling inhibits CDC25, a phosphatase that

removes inhibitory phosphorylation at a key tyrosine residue in

mitotic-CDK (M-CDK; Fig 3). In addition, DNA damage signaling

kinases stimulate WEE1 (O’Connell et al, 1997; Boddy et al, 1998;

Lee et al, 2001), a kinase responsible for phosphorylating the

same inhibitory tyrosine site (Fig 3; Mueller et al, 1995). While

DNA damage signaling in budding yeast does not appear to

impinge upon the Cdc25 phosphatase homolog Mih1, the budding

yeast kinase Swe1 (the WEE1 homolog) is regulated similar to its

counterpart in higher eukaryotes and fission yeast. Swe1 is likely

phosphorylated and activated by DNA damage signaling, which

results in inhibition of M-CDK (Fig 3; Edenberg et al, 2015; Palou

et al, 2015). DNA damage signaling in budding yeast is also able

to suppress M-CDK activity through additional redundant mecha-

nisms that remain unclear (Palou et al, 2015). In addition to

inhibiting M-CDK-dependent activation of the anaphase-promoting

complex (APC/C), DNA damage signaling in budding yeast more

directly inhibits the onset of anaphase through Chk1, which

Table 1. Key protein names in budding yeast, fission yeast, and humans.

Budding yeast Fission yeast Humans

Apical PIKK kinase Mec1 Rad3 ATR

Tel1 Tel1 ATM

DNA-PKcs

Downstream
checkpoint kinase

Rad53 Cds1 CHK2/CHK1a

Chk1 Chk1 CHK1?

MRN complex Mre11 Mre11 MRE11

Rad50 Rad50 RAD50

Xrs2 Nbs1 NBS1

ATR cofactor Lcd1 (Ddc2) Rad26 ATRIP

9-1-1 complex Ddc1 Rad9 RAD9

Mec3 Hus1 HUS1

Rad17 Rad1 RAD1

ATR activators Dpb11 Rad4/Cut5 TOPBP1

Dna2

Ddc1

ETAA1

Adaptors Rad9 Crb2 MDC1/53BP1

Mrc1 Mrc1 CLASPIN

aHuman CHK1 is a functional analog of yeast Rad53.
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phosphorylates and stabilizes the anaphase-inhibiting Pds1/securin

protein (Fig 3; Sanchez et al, 1999; Wang et al, 2001), preventing

the separation of sister chromatids. Moreover, Rad53 can influ-

ence the mitotic spindle assembly checkpoint (SAC) through inhi-

bition of the polo-like kinase Cdc5 (Fig 3; Sanchez et al, 1999;

Valerio-Santiago et al, 2013; Zhang et al, 2009). Rad53-dependent

inactivation of Cdc5, particularly in response to telomere damage,

prevents Cdc5’s phosphorylation of the spindle assembly check-

point protein Bfa1 (Valerio-Santiago et al, 2013); however, it is

unclear whether Rad53 phosphorylates Cdc5 directly (Fig 3). The

inhibition of Cdc5 by DNA damage signaling also indirectly influ-

ences the resolution of joint molecules prior to M phase, as Cdc5

activity is important for promoting the activity of the Mus81

resolvase (Szakal & Branzei, 2013). Cdc5 has also been impli-

cated in the down-regulation of the DNA damage response

(Donnianni et al, 2010; Vidanes et al, 2010). A more in-depth

review exploring Cdc5’s complex relationship with the DNA damage

response in yeast can be found in Botchkarev and Haber (2018).

Similar to its budding yeast counterpart, the mammalian polo-like

kinase PLK1 is also inhibited by DNA damage signaling, albeit in an

indirect manner (Fig 3; Bruinsma et al, 2017; Qin et al, 2013).

A critical mediator of cell cycle arrest in humans is the p53

transcription factor, whose classical function is to trigger the

apoptotic program (reviewed in Chen, 2016). p53 is directly phos-

phorylated and stabilized by all the DNA damage signaling

kinases, eliciting a p53-dependent transcriptional response that

impacts the DNA damage response (reviewed in Kruse & Gu,

2009). p53-mediated expression of the CDK inhibitor protein p21

represents the primary mechanism by which p53 blocks progres-

sion through the cell cycle (Fig 3; Harper et al, 1993, 1995).

Apical kinases in mammalian DNA damage signaling also phos-

phorylate the p53 inhibitor Mdm2, impairing its ability to promote
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Figure 2. Recruitment of DNA damage signaling kinases and adaptor proteins to DNA lesions: conserved features between budding yeast and humans.
Phosphorylation and adaptor proteins play a key role in the recruitment of downstream checkpoint kinases. The colored ovals indicate phosphorylation events mediated by
DNA damage signaling kinases (see kinase key). The orange lines indicate protein–protein interactions promoted by the indicated phosphorylation events (also methylation
(me) or ubiquitylation (Ub)). Activation of the downstream checkpoint kinases by the apical PIKK kinases requires adaptor proteins (outlined in green). In most cases, these
adaptor proteins act as scaffolds to directly bind to and recruit the downstream checkpoint kinase. The model, mostly based on extensive work in yeast, posits that the
recruitment of the downstream checkpoint kinase to the proximity of the apical PIKK kinase enables the phosphorylation and activation of the downstream checkpoint kinase.
In addition to activating the downstream checkpoint kinase, phosphorylation events mediated by the apical PIKK kinases are critical for scaffold assembly, often promoting
protein–protein interactions. Accordingly, a conserved feature of several adaptor proteins in budding yeast and humans is the presence of protein domains responsible for
binding phosphorylated proteins (FHA and BRCT domains). Notably, other kinases such as CDK and CK2 also catalyze phosphorylation events involved in adaptor recruitment,
although these events are often not induced by DNA damage. For DNA-PKcs, while this kinase has been implicated in the phosphorylation of H2AX and 53BP1, it does not seem
to be involved in CHK2 phosphorylation.
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p53 nuclear export and its subsequent degradation (Mayo et al,

1997; Maya et al, 2001; Shinozaki et al, 2003). Unlike most

factors covered in Fig 3, Saccharomyces cerevisiae does not have

clear p53 or Mdm2 homologs. That said, for reasons discussed in

the section on dNTP regulation, the DNA damage signaling-

mediated control of p53 might functionally resemble the control

of the Crt1 transcription regulator by Rad53 and Dun1 (Huang

et al, 1998).

Fork stability and protection
During DNA replication, stalled replication forks may be targeted

and degraded by nucleases. Since fork degradation pathways impair

replication fork restart after stalling, leading to persistent DNA

lesions, they are considered a major driving force of genomic insta-

bility (recently reviewed in Pasero & Vindigni, 2017; Patel & Weiss,

2018). In S. cerevisiae, Rad53 is believed to play a major role in fork

stability. It is worth mentioning that Rad53 is essential, and that the
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Figure 3. Yeast-to-human parallels in core checkpoint responses mediated by DNA damage signaling.
Substrate map highlighting the phosphorylation events involved in core DNA damage signaling responses in yeast and humans (see text for detailed discussion of each
substrate). Conserved or functionally analogous phosphorylation events are positioned parallel to each another. The colored ovals indicate phosphorylation events mediated
by DNA damage signaling kinases (see “kinase-dependency” key). The arrows or lines that emanate from the colored ovals represent the role phosphorylation plays in
regulating that protein (see “role of phosphorylation” key). Question marks indicate uncertainty, either in the functionality of the phosphorylation event or in the identity of
the kinase or substrate. Arrows that impinge on CDK demonstrate how DNA damage signaling can indirectly inhibit CDK activity.
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lethality of rad53 cells can be rescued by deletion of SML1, an inhi-

bitor of the ribonucleotide reductase enzyme responsible for catalyz-

ing the rate-limiting step in DNA precursor synthesis (Zhao et al,

1998). Nonetheless, even in the absence of SML1, Rad53 mutants

are exquisitely sensitive to chemical agents that damage DNA or

stall DNA replication forks (Allen et al, 1994; Sanchez et al, 1999;

Gunjan & Verreault, 2003). This sensitivity to DNA damaging agents

has been primarily attributed to Rad53’s role in stabilizing and

restarting stalled replication forks (reviewed in detail here: Segurado

& Tercero, 2009). Rad53 protects stalled replication forks from

nucleolytic processing by phosphorylating and inhibiting the Exo1

exonuclease (Fig 3; Cotta-Ramusino et al, 2005; Morin et al, 2008;

Segurado & Diffley, 2008). In addition, Rad53 regulates the Pif1 and

Rrm3 helicases, potentially limiting replication fork reversal and

subsequent fork degradation (Fig 3; Rossi et al, 2015). However,

precisely how DNA damage signaling maintains replication fork

integrity is unknown and represents a fundamental knowledge gap

in the field. Recent work has revealed that Rad53 phosphorylates

the replicative helicase component Cdc45, which in turn recruits

and stabilizes Rad53 at replication complexes (Can et al, 2018).

Identification of additional key substrates and recruiting mecha-

nisms will be necessary to deconstruct Rad53’s functions in main-

taining fork stability, which may involve a range of redundant

phosphorylation events in more than one essential replisome

protein.

Mammalian DNA damage signaling kinases also play key roles in

protecting stalled replication forks (Fig 3). Human EXO1 is phos-

phorylated by ATR, which promotes ubiquitylation-dependent

degradation of EXO1 and prevents chromosome fragmentation due

to unrestrained EXO1 processing activity (El-Shemerly et al, 2008;

Tomimatsu et al, 2017). CHK1 also phosphorylates EXO1 directly

on serine 746, creating a docking site for binding to 14-3-3 proteins,

which prevent recruitment of EXO1 to chromatin and limit EXO1

action at stalled forks (Engels et al, 2011; Li et al, 2019). In addi-

tion, ATR governs the recruitment and/or stability of several heli-

cases important for remodeling the stalled fork and promoting fork

restart. For example, ATR phosphorylates the Werner syndrome

helicase WRN at multiple S/T-Q sites, promoting WRN-RPA co-loca-

lization at replication stress sites (Ammazzalorso et al, 2010). Muta-

tion of these ATR sites causes stalled fork breakage and severely

impacts the resumption of DNA replication. Several studies have

demonstrated that the Bloom syndrome helicase, BLM, is directly

phosphorylated by ATR and that this phosphorylation is important

for both promoting replication fork restart after HU-mediated arrest

and suppressing dormant origin firing (Davies et al, 2004, 2007).

CHK1 may also constitutively phosphorylate BLM to prevent protea-

some-dependent BLM degradation, suppress chromatin bridge

formation, and promote an interaction with 53BP1 (Sengupta et al,

2004; Tripathi et al, 2007; Kaur et al, 2010; Petsalaki et al, 2014).

Interestingly, in yeast, Rad53 and Sgs1 (a BLM ortholog) physically

interact (Hegnauer et al, 2012), and Sgs1 has been reported to

display a strong genetic interaction with Rad9, 53BP1’s yeast

homolog (Nielsen et al, 2013). Finally, David Cortez’s group

described an additional mechanism of fork stability regulation

through the ATR’s phosphorylation of the SMARCAL1 helicase

(Couch et al, 2013). ATR-dependent phosphorylation of SMARCAL1

inhibits fork remodeling activity, preventing subsequent pathologi-

cal fork degradation by active nucleases (Couch et al, 2013;

Kolinjivadi et al, 2017). Collectively, these examples highlight how

yeast and human DNA damage signaling kinases protect replication

fork integrity via the direct regulation of nucleases and helicases.

Inhibition of origin firing
One mechanism for preventing genome instability during replication

stress is to inhibit the firing of late origins (reviewed in McIntosh &

Blow, 2012; Yekezare et al, 2013). DNA damage signaling kinases

control origin firing through two main pathways, which are

conserved from yeast to higher eukaryotes (Fig 3). During genotoxic

stress in S phase, Rad53 phosphorylates Dbf4, a subunit of the

Dbf4-dependent kinase (DDK) complex, and the Sld3 component

of pre-RCs (pre-replication complexes) to inhibit the firing of late-

replicating origins (Lopez-Mosqueda et al, 2010; Zegerman &

Diffley, 2010), thereby slowing the progression of DNA synthesis

and preventing the exhaustion of RPA (Toledo et al, 2013, 2017).

While the mechanism by which Rad53 phosphorylation regulates

DDK is unknown, the phosphorylation of Sld3 by Rad53 is thought

to prevent the recruitment of Dpb11 to primed replication origins

(Lopez-Mosqueda et al, 2010; Zegerman & Diffley, 2010). In verte-

brates, the Dpb11 ortholog TOPBP1 docks to CDK2-phosphorylated

Treslin (the Sld3 ortholog) to mediate origin firing (Kumagai et al,

2010; Boos et al, 2011). Conditions that perturb DNA replication

and trigger CHK1 activation have been shown to disrupt the Tres-

lin–TOPBP1 interaction (Boos et al, 2011) in a mechanism analo-

gous to Rad53-dependent control of the Sld3–Dpb11 interaction in

S. cerevisiae. CHK1 has also been shown to directly phosphorylate

Treslin in Xenopus egg extracts, inhibiting DNA replication (Guo

et al, 2015). Metazoan ATR/ATM and CHK1 phosphorylate the

DBF4 subunit of DDK, inhibiting pre-RC assembly and origin firing

(Costanzo et al, 2003; Heffernan et al, 2007; Lee et al, 2012). CHK1

is also assumed to inhibit origin firing indirectly by suppressing

CDK activity via the inhibition of CDC25 (Shechter et al, 2004;

Sorensen & Syljuasen, 2012). Consistent with this assumption, inhi-

bition of CDK rescues replication stress sensitivity of cells lacking

ATR or CHK1 signaling, likely by reducing origin firing and prevent-

ing RPA exhaustion (Toledo et al, 2013; Dungrawala et al, 2015).

Paradoxically, Mec1 (and potentially ATR/ATM) also promotes

DNA replication by phosphorylating core components of the repli-

some, such as the MCM helicase (Cortez et al, 2004; Yoo et al,

2004; Randell et al, 2010).

Transcriptional control
In yeast, Rad53 plays a central role in the transcriptional response

to DNA damage and replication stress. In G1, Rad53 was proposed

to influence the timing of START by phosphorylating Swi6, a

component of the MBF/SBF transcription factor (analog of human

E2F; Sidorova & Breeden, 1997, 2003). Rad53 can also regulate the

transcription of MBF/SBF targets at the G1/S transition and during S

phase through phosphorylation and inhibition of the Nrm1 tran-

scriptional repressor protein, promoting transcription of the largest

set of co-regulated genes in the DNA damage response (Fig 3;

Bastos de Oliveira et al, 2012; de Bruin et al, 2008; Travesa et al,

2012). In addition, Dun1 up-regulates the transcription of a specific

set of DNA damage-induced genes, including subunits of ribonu-

cleotide reductase (RNR), by inducing the phosphorylation and inac-

tivation of the transcriptional repressor protein, Crt1 (Huang et al,

1998; Fig 3). In-depth transcriptome analyses performed in budding
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yeast suggest that DNA damage signaling kinases may impinge upon

other, as yet unknown, transcription factors (Jaehnig et al, 2013).

DNA damage signaling kinases profoundly impact multiple tran-

scriptional programs in mammals (Fig 3). The E2F pathway (analo-

gous to yeast SBF/MBF) represents a major transcriptional system

regulated by DNA damage signaling kinases. ATM-, ATR-, and

CHK2-dependent phosphorylation activates E2F1 (Lin et al, 2001;

Stevens et al, 2003), whereas CHK1 inhibits the transcriptional

repressor E2F6 through direct phosphorylation (Bertoli et al,

2013a). Interestingly, CHK1’s inhibition of E2F6 resembles the

Rad53-dependent inhibition of the S. cerevisiae transcriptional

repressor Nrm1, as discussed above (more details can be found

here: Bertoli et al, 2013b). Similar to yeast, E2F-dependent tran-

scription in humans includes a large set of genes that play a role in

DNA replication, cell cycle, and DNA repair (reviewed here:

Bracken et al, 2004; Poppy Roworth et al, 2015). Not surprisingly,

inhibition of the ATR–CHK1 pathway causes major remodeling of

the proteome via control of the E2F transcriptional circuit and

strongly impacts the DNA repair machinery (Kim et al, 2018).

Finally, recent work in mammalian cells has revealed a role for

ATR in enforcing a checkpoint between the S and G2 phases of the

cell cycle. ATR suppresses CDK-dependent phosphorylation and

activation of the FOXM1 transcription factor by limiting CDK activ-

ity during S phase (Fig 3), thereby preventing a premature expres-

sion of G2-specific genes (Saldivar et al, 2018). While the function

of the FOXM1 transcription factor is conserved in yeast (Pic-Taylor

et al, 2004; Murakami et al, 2010), it is unclear whether the

budding yeast checkpoint kinases also restrict the expression of G2/

M-specific transcripts through an analogous mechanism (Fig 3).

Regulation of dNTP production
In budding yeast, the regulation of dNTP production is considered

an essential function of DNA damage signaling. This is supported

by the fact that the lethality caused by deletion of MEC1 or

RAD53 can be suppressed by deletion of SML1, an inhibitor of

the ribonucleotide reductase enzyme complex, which catalyzes

the limiting step in dNTP production (Zhao et al, 1998). The

Rad53–Dun1 signaling axis induces the activity of the RNR

complex by controlling several of its subunits via distinct mecha-

nisms (Allen et al, 1994; Bashkirov et al, 2003; Fig 3). Once acti-

vated by Rad53, Dun1 directly phosphorylates Sml1, resulting in

its degradation and the activation of the Rnr1 subunit (Zhao et al,

2001; Zhao & Rothstein, 2002; Lee et al, 2008). In addition, Dun1-

mediated phosphorylation of Dif1, an SML1 paralog, results in

Dif1’s degradation and the subsequent export of the Rnr2–Rnr4

subunits from the nucleus to the cytosol, which enables the

formation of the active RNR complex (Lee et al, 2008). Dun1 also

up-regulates the transcription of RNR3 by inducing the phosphory-

lation and inactivation of the transcriptional repressor protein,

Crt1 (Huang et al, 1998; Fig 3). Rad53 also plays a Dun1-indepen-

dent role in RNR control. For example, Rad53’s phosphorylation

of the transcriptional repressor protein Nrm1, upon exposure to

replication stress, results in the MBF-mediated induction of RNR1

transcription (Bastos de Oliveira et al, 2012; Huang et al, 1998;

Travesa et al, 2012; Fig 3). Since cells lacking Dun1 are viable, in

contrast to rad53D cells, it is possible that the essential function

of Rad53 is due to both its Dun1-dependent and Dun1-indepen-

dent roles in modulating RNR or, alternatively, a combination of

Rad53’s function in dNTP regulation (via Dun1) and other roles

in, for example, replication fork stability.

Despite the critical importance of dNTP regulation in yeast, no

clear Sml1, Dif1, or Dun1 orthologs or functional analogs have been

identified so far in mammalian cells. Nevertheless, it is intriguing

that an extra genomic copy of the RRM2 gene (RNR regulatory

subunit) can extend the lifespan of ATR-deficient mice (Lopez-

Contreras et al, 2015). Whether ATR directly phosphorylates RRM2

is to date not clear, although ATR may promote RRM2 stabilization

by regulating the degradation of the Cyclin F subunit of the SCF

ubiquitin ligase complex (Fig 3), which prevents SCF-mediated

degradation of RRM2 (D’Angiolella et al, 2012). RRM2 transcription

is also induced by E2F and thus can be indirectly up-regulated by

the ATR–CHK1 kinases (as discussed in the section “transcriptional

control”; Ishida et al, 2001). Interestingly, p53 promotes transcrip-

tion of the RRM2B subunit of human RNR (Tanaka et al, 2000), and

it is tempting to speculate on a potential analogy to the role of yeast

Crt1 in inducing RNR3 transcription (Huang et al, 1998). In

response to hypoxia, this p53-dependent induction of RRM2B is

important for maintaining the fidelity of DNA replication in low

oxygen conditions (Foskolou et al, 2017). However, a direct link to

the DNA damage signaling kinases has yet to be made.

Control of DNA repair by DNA damage signaling kinases

The control of DNA repair is a core function of DNA damage signal-

ing kinases. Mounting genetic evidence from budding yeast illus-

trates the central role of DNA damage signaling to maintaining

genome integrity. For example, using a genetic assay to assess chro-

mosome instability in yeast, known as the gross chromosomal rear-

rangement (GCR) assay, the Kolodner Lab showed that cells lacking

Mec1 and Tel1 exhibit extremely high rates of GCRs (Myung et al,

2001). In fact, mec1D tel1D cells are some of the most genetically

unstable strains isolated to date. These cells undergo GCRs at a rate

of five orders of magnitude higher than wild-type cells (Myung et al,

2001). As discussed below, current evidence supports a model

whereby the ability of Mec1 and Tel1 to suppress GCRs and related

forms of genetic instabilities is associated with the role these kinases

play in directly targeting and regulating components of the DNA

repair machinery. In mammals, ATM and ATR are also responsible

for maintaining chromosome stability (Xu et al, 1996; Brown &

Baltimore, 2000); as shown in Fig 4, ATM and ATR phosphorylate

and regulate a large set of DNA repair factors. Importantly, the high

levels of genetic instability in yeast or mammalian cells lacking

Mec1/ATR and Tel1/ATM have not yet been recapitulated by any

combination of mutations of phosphorylation sites, suggesting that

the key substrates through which these kinases suppress genomic

instabilities remain unclear.

Phosphorylation control of the homologous recombination
machinery: substrates and mechanisms
In both yeast and humans, DNA damage signaling kinases phospho-

rylate proteins in homologous recombination (HR)-directed repair

and have been shown to play an important regulatory role. For

example, Mec1 phosphorylates Rtt107, Slx4, and Sgs1, all of which

are known to play multiple roles in HR-mediated repair, from the

control of resection to the dissolution or resolution of joint
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chromosome structures (Sarbajna & West, 2014; Hang & Zhao,

2016; Cussiol et al, 2017; Guervilly & Gaillard, 2018). Recent work

from our laboratory has revealed that phosphorylation of these

proteins correlates with the ability of cells to suppress GCRs,

suggesting that proper control of HR repair is essential for prevent-

ing chromosomal rearrangements (Lanz et al, 2018). Phosphoryla-

tion of Slx4 by Mec1 promotes DNA end resection, the first step in

the HR process (Dibitetto et al, 2016; Liu et al, 2017). Mechanisti-

cally, Mec1 phosphorylation mediates the interaction between Slx4

and Dpb11, a multi-BRCT domain scaffold that bridges Slx4 to the 9-

1-1 clamp loaded at 50 recessed junctions (Ohouo et al, 2010;

Cussiol et al, 2015; Fig 4). Such stabilization of Slx4 at DNA lesions,

which is also dependent on Rtt107’s interaction with phosphory-

lated H2A (Fig 4), is believed to counteract a resection block

promoted by Rad9, thereby allowing long-range resection to occur

(Dibitetto et al, 2016; Liu et al, 2017). Importantly, the role of Rad9

in counteracting resection relies on its oligomerization and Rad53

signaling (Clerici et al, 2014; Ferrari et al, 2015; Gobbini et al,

2015), which are both dependent on Mec1-mediated phosphoryla-

tion events. Therefore, Mec1 plays opposing roles in HR, inhibiting

resection via the Rad9–Rad53 signaling axis or promoting resection

by mediating the Slx4–Dpb11 interaction (Fig 4).

Mec1’s phosphorylation of Slx4 has also been linked to a role in

single-strand annealing (SSA), specifically in regulating cleavage of

30 non-homologous DNA tails by Rad1–Rad10 (Toh et al, 2010). In

another example, which supports a key role for Mec1 in the control

of HR, phosphorylation of multiple S/T-Q residues in Sae2, a pro-

resection factor homologous to human CtIP, contributes to Mec1-

mediated GCR suppression (Liang et al, 2015). Furthermore, Mec1

phosphorylates the strand exchange factor Rad55, and Rad53

promotes the phosphorylation and DNA binding of the Tid1/Rdh54

translocase (Fig 4; Bashkirov et al, 2006; Ferrari et al, 2013;

Herzberg et al, 2006). Mec1 also phosphorylates Rad51 at serine

192, likely supporting its ATPase activity and capacity for strand

invasion (Fig 4; Flott et al, 2011).

The ssDNA binding protein RPA, which plays a critical role in

coating resected DNA ends during the homologous recombination

process, is one of the most established targets of the PIKKs. In

both yeast and humans, RPA, through an interaction with Rad52,

is thought to promote the loading of Rad51 on ssDNA (Park et al,

1996; Sugiyama et al, 1998; Sugiyama & Kowalczykowski, 2002).

How PIKK phosphorylation regulates RPA function is not well

understood, although studies point to a role in homologous

recombination. RPA phosphorylation was initially proposed to

promote the interaction between RPA and Rad52 (Deng et al,

2009); however, recent work using single-molecule imaging

reports that RPA phosphorylation inhibits DNA end resection via

inhibition of the BLM helicase (Soniat et al, 2019). RPA phospho-

rylation in human cells has also been reported to impact DNA

synthesis under stress (Vassin et al, 2009), the recruitment of

factors to stalled replication forks (Murphy et al, 2014), and the

imposition of the cell cycle checkpoint (Vassin et al, 2009). In

budding yeast, mutation of the residues in RPA targeted by Mec1

and Tel1 has yet to yield an observable phenotype. Overall, the

accumulated evidence supports a model whereby DNA damage

signaling plays a key role in the control of the HR machinery by

targeting multiple components that participate in discrete steps of

the HR process (Fig 4).

ATR is a key regulator of homologous
recombination-mediated repair
ATR’s primary action occurs in S phase, a period during the cell

cycle where a sister DNA template is available for homology-

directed repair, and it functions mainly as a pro-HR kinase. Deple-

tion or inhibition of ATR impairs the ability of cells to utilize HR

and leads to synergistic cell death with replication stress-inducing

drugs (Wang et al, 2004a; Vriend et al, 2016; Yazinski et al, 2017;

Kim et al, 2018). One model proposes that during HR-mediated

repair, an ATM-to-ATR transition occurs, where ATM initiates resec-

tion and triggers the ATR activation that governs the later steps of

homologous recombination (Cuadrado et al, 2006; Shiotani & Zou,

2009). Our laboratory proposed that ATR drives HR by promoting

the stabilization of the pro-resection factor BRCA1 at DNA lesions

via interaction with TOPBP1 (human ortholog of Dpb11), which

may counteract recruitment of the anti-resection factor 53BP1 to

sites of DNA lesions (Liu et al, 2017). It is tempting to speculate that

this mechanism could be analogous to the Mec1-mediated Dpb11–

Slx4 interaction in yeast, which is also important for DSB resection

(Dibitetto et al, 2016; Liu et al, 2017; Ohouo et al, 2010; Fig 4). A

recent study from the Zou Lab provided additional insights into how

ATR promotes HR-mediated repair. They showed that while initial

DSB resection requires CDK activity, later steps in HR require a

“CDK-to-ATR switch” to promote proper recruitment of the key HR

factors PALB2 and BRCA2, which are required for strand invasion.

Mechanistically, ATR activated at resected ends recruits PALB2–

BRCA2 to DNA damage sites by phosphorylating PALB2 on serine

59 to promote its interaction with BRCA1 (Buisson et al, 2017). At

the same time, ATR inhibits CDK to prevent a CDK-dependent phos-

phorylation at PALB2’s serine 64 that inhibits the BRCA1–PALB2

interaction (Buisson et al, 2017). Finally, the control of E2F tran-

scription via ATR–CHK1 signaling strongly impacts the ability of

cells to utilize HR-mediated repair by ensuring proper expression of

key components of the HR machinery (Kim et al, 2018). Similar to

yeast, RAD51 deposition and RAD51-mediated strand invasion are

regulated by DNA damage signaling kinases. CHK1 has been shown

to drive the formation of RAD51 foci at stalled replication forks,

likely through direct phosphorylation (Sorensen et al, 2005). CHK1

and CHK2 may also be important to regulate the association of

RAD51 with BRCA2 (Bahassi et al, 2008). Moreover, RAD51C, a

putative homolog of yeast Rad55, associates with XRCC3, whose

phosphorylation by ATM and ATR in response to IR is important for

HR regulation (Somyajit et al, 2013).

◀ Figure 4. Yeast-to-human parallels in the regulation of DNA repair proteins by DNA damage signaling: substrates and mechanisms.
Substrate map cataloging the DNA damage signaling events regulating DNA repair proteins (see text for detailed discussion of each substrate). Conserved or analogous
substrates involved in related DNA repair pathways are positioned parallel to each other. The colored ovals indicate phosphorylation events mediated by DNA damage
signaling kinases (see “kinase-dependency” key). The arrows or lines that emanate from the colored nodes represent the role phosphorylation plays in regulating that protein
(see “role of phosphorylation” key). Question marks indicate uncertainty, either in the functionality of the phosphorylation event or in the identity of the kinase or substrate.
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ATM and DNA-PKcs in resection control
ATM signaling blocks DNA end resection via recruitment of an

anti-resection complex formed by 53BP1-RIF1-REV7-SHIELDIN

(Setiaputra & Durocher, 2019). This process is achieved through a

defined order of events: phosphorylation of H2AX and MDC1,

followed by recruitment of the RNF8 and RNF168 ubiquitin ligases,

followed by ubiquitylation of H2A and recruitment of 53BP1, whose

phosphorylation by ATM serves as a docking platform for RIF1 and,

indirectly, the REV7–SHIELDIN complex (Fig 4). In addition, ATM

limits resection by phosphorylating the proteasomal shuttle factor

UBQLN4, which leads to degradation of MRE11, a component of the

MRN complex required for initial steps in resection (Jachimowicz

et al, 2019). Paradoxically, ATM may also promote resection by

phosphorylating CtIP, a key factor required for resection initiation

(Shibata et al, 2011). DNA-PKcs also plays opposing roles in resec-

tion control. Whereas binding of DNA-PKcs to DNA ends has a

major anti-resection function by preventing recruitment of the EXO1

nuclease, DNA-PKcs’ autophosphorylation is required to promote

dissociation from DNA ends, thereby allowing EXO1 binding and

resection (Zhou & Paull, 2013). More work is needed to better

understand and define the extent to which the actions of ATM and

DNA-PKcs impact overall resection in cells.

ATM and DNA-PKcs promote NHEJ
ATM and DNA-PKcs are key players in the control of non-homolo-

gous end joining (NHEJ), a pathway for DSB repair in which DNA

ends are ligated without the need for a homologous template. ATM

and DNA-PKcs play partially redundant roles in promoting NHEJ, as

impairment of both kinases results in a stronger NHEJ defect

compared with impairment of one of the kinases (Gapud &

Sleckman, 2011; Gapud et al, 2011; Zha et al, 2011). In addition,

combined ATM and DNA-PKcs deficiency leads to embryonic lethal-

ity in mice and a more severe DSB repair defect during immunoglob-

ulin class-switch recombination than loss of only one of the kinases

(Callen et al, 2009). The ability of ATM and DNA-PKcs to limit DNA

end resection is a key part of their pro-NHEJ function; however,

these kinases likely regulate additional processes to promote NHEJ,

since chemical inhibition of both kinases severely inhibits NHEJ

without inducing resection due to persistent DNA-PKcs at break

ends. ATM and DNA-PKcs redundantly phosphorylate several NHEJ

repair components, such as XLF, Artemis, and POLk (Zhang et al,

2004; Goodarzi et al, 2006; Yu et al, 2008; Sastre-Moreno et al,

2017) (Fig 4). In addition, DNA-PKcs solely phosphorylates the

XRCC4, KU70, KU80, and LIG-IV core components (Chan et al,

1999; Lee et al, 2004; Wang et al, 2004b; Douglas et al, 2005; Amiri

Moghani et al, 2018). However, mutation of these phosphorylation

sites, which are dependent on ATM and/or DNA-PKcs, does not

impair NHEJ or phenocopy the loss or inhibition of ATM and DNA-

PKcs function. Notably, phosphorylation of a non-conventional

DNA-PKcs substrate, the transcription factor NR4A, was proposed

to be important for NHEJ, as demonstrated by a phosphosite

mutation, but the impact of the mutation in NHEJ remains unclear

(Malewicz et al, 2011).

In S. cerevisiae, little is known about the crosstalk between DNA

damage signaling kinases and NHEJ repair factors. Tel1 phosphory-

lates Pol4, stimulating its gap-filling activity and preventing the

appearance of deleterious chromosome translocations (Ruiz et al,

2013). Another report showed that the Dun1 kinase is also

important for NHEJ by phosphorylating Nej1, a key activator of the

NHEJ ligase Dnl4 (Ahnesorg & Jackson, 2007). DNA damage signal-

ing kinases in budding yeast do not appear to impinge upon the

NHEJ pathway as extensively as they do in humans and may reflect

budding yeast’s strong preference for homologous recombination-

mediated DNA repair (Jasin & Rothstein, 2013).

Other DNA repair pathways
While DNA damage signaling kinases appear to extensively impinge

upon multiple factors and steps of recombinational DNA repair, they

also target and regulate other repair mechanisms (Fig 4), suggesting

that their action is context-dependent and, in some cases, important

in repair pathway choice. In budding yeast, Mec1 phosphorylates

the nucleotide excision repair (NER) protein Rad26 and regulates

the transcription-coupled NER mode of repair (Taschner et al,

2010). In humans, ATR also controls NER by phosphorylating XPA

(Wu et al, 2006) and, in conjunction with ATM, the histone acetyl-

transferase HBO1. HBO1 phosphorylation stabilizes its interaction

with DDB2, promoting its proteasome-mediated degradation (Mat-

sunuma et al, 2016). In addition, ATR phosphorylates POLg at

serine 601, facilitating post-replication repair and promoting check-

point activation at UV damage sites (Gohler et al, 2011). In yeast,

Mec1 regulates the translesion synthesis polymerase Rev1 poten-

tially through direct phosphorylation (Pages et al, 2009). This

complements earlier studies, where it was shown that Mec1 is

essential for Rev1 binding to chromosomes (Hirano & Sugimoto,

2006; Sabbioneda et al, 2007). DNA damage signaling kinases are

also important for the execution of mismatch repair (MMR) and

base excision repair (BER). ATM phosphorylates the MMR protein

MLH1, contributing to its stabilization after DNA damage (Romeo

et al, 2011). Also, ATM directly phosphorylates the BER proteins

TDP1 (Das et al, 2009) and MPG (Agnihotri et al, 2014), enhancing

their DNA repair activity and promoting cell survival after exposure

to alkylating agents. DNA-PKcs is also able to phosphorylate TDP1

at serine 81 (Das et al, 2009), allowing interaction with the DNA

repair protein XRCC1, which is itself a CHK2 target for BER regula-

tion (Chou et al, 2008). Finally, Rad53 was shown to be important

in break-induced replication (BIR) through the phosphorylation of

the Pif1 helicase (Vasianovich et al, 2014).

Fanconi anemia pathway
The Fanconi anemia pathway is a genetic network involved in the

repair of DNA interstrand crosslinks (ICLs) in the genome (Niraj

et al, 2019). It combines the action of nucleotide excision repair and

homologous recombination factors, several of which are regulated

by ATR (Fig 4). ATR plays a crucial role at an early step in the

Fanconi anemia pathway by phosphorylating the FANCI protein and

inducing ubiquitylation of the FANCI–FANCD2 complex (Ishiai

et al, 2008; Shigechi et al, 2012). The ubiquitylated FANCI–FANCD2

complex serves as a key scaffold for the recruitment of several DNA

repair proteins, including structure-specific nucleases and TLS poly-

merases involved in ICL repair (Knipscheer et al, 2009). In addition

to promoting repair and replication fork start, phosphorylation of

FANCI by ATR modulates DNA replication by inhibiting dormant

origin firing (Chen et al, 2015). FANCD2 is also phosphorylated by

ATM and ATR (Ho et al, 2006), whereas CHK1 phosphorylation is

important for the FANCD2–BRCA2 interaction (Zhi et al, 2009).

CHK1 phosphorylates FANCE at threonine 346 and serine 374 to
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promote resistance to mitomycin C (Wang et al, 2007). Additionally,

ICL resistance has been linked to the ATR-mediated phosphorylation

of FANCA at serine 1449 and FANCM at serine 1045 (Collins et al,

2009; Singh et al, 2013; Fig 4).

Coordination of checkpoint and DNA repair: where are we
30 years later?

Following the checkpoint paper by Weinert and Hartwell in 1988

(Weinert & Hartwell, 1988), it was not at all clear how eukaryotic

cells sense DNA damage and couple lesion detection to the control

of the cell cycle. At that time, Weinert and Hartwell defined check-

point as “control mechanisms enforcing dependency in the cell

cycle”, implying the existence of some undefined regulatory mecha-

nism. While the 1988 paper marks the identification of the first

checkpoint factor in budding yeast (Rad9), the checkpoint concept

largely preceded the identification of most key components mediat-

ing lesion detection and signaling. It was not even clear whether

kinases were involved; in fact, the word “kinase” is absent from

both the checkpoint papers of 1988 and 1989 (Weinert & Hartwell,

1988; Hartwell & Weinert, 1989). Identification of the apical PIKK

kinases and downstream checkpoint kinases, as well as their

involvement in mediating DNA damage responses, would not

become evident until the mid-1990s. Decades later, our understand-

ing of both the mechanisms of lesion detection and the signaling

circuitry connecting lesion detection to regulation of biological

processes has radically changed. The field has defined many of the

key proteins required for lesion detection and uncovered an exten-

sive network of kinase substrates. The concept that checkpoint is a

simple mechanism coupling lesion detection to cell cycle arrest also

dramatically changed to incorporate both a range of biological

outputs and a network of functional and physical connections.

Nonetheless, at its essence, the central concept that DNA damage

checkpoints coordinate cell cycle with DNA repair continues to hold

true.

A unified model for the coordination of checkpoint and repair in the
DSB response
When Weinert and Hartwell first proposed the checkpoint concept,

it would be considered improbable that the circuitry responsible for

promoting cell cycle arrest also directly and actively controls the

DNA repair machinery. However, over the last 30 years, accumu-

lated knowledge from work in yeast and mammals points to a key

role for the apical PIKKs and downstream checkpoint kinases in the

spatiotemporal coordination of checkpoint responses and DNA

repair transactions. The response to DSBs epitomizes such intricate

coordination. Mounting evidence supports a model whereby early

response to DSBs involves rapid activation of apical PIKK kinases

and the establishment of an emergency response that inhibits

improper nuclease action (and resection) to prevent improper

processing of DNA ends. These early response actions include cell

cycle arrest, general inhibition of origin firing (if in S phase), and

extensive transcriptional re-programming. Following establishment

of a robust checkpoint response and early resection block, cells

must decide when to initiate DNA repair, including which repair

pathway to utilize and when to resume the cell cycle. This decision

is simpler in G1 cells, as the engagement of NHEJ for the repair of

DSBs is highly preferred and can occur as a natural consequence of

the resection block. However, for many DNA lesions in S phase and

G2, the use of HR-mediated repair is the pathway of choice for

error-free repair. Cells must, therefore, oppose the initial anti-resec-

tion effects of DNA damage signaling to initiate resection, the first

step in HR. Given the importance of the decision to initiate (or not

to initiate) resection for repair pathway choice, this step is under

intense regulation by phosphorylation. In yeast, Mec1 promotes

resection by phosphorylating Slx4 and likely Sae2, opposing its own

anti-resection function via Rad53 activation. Interestingly, such dual

and opposite functions for Mec1 could be key to providing a highly

controllable system in which resection is spatiotemporally fine-

tuned. This is particularly important, as the extent of resection

impacts which HR-mediated mechanisms will follow [e.g., canonical

HR, single-strand annealing, synthesis-dependent strand annealing

(SDSA), and break-induced replication (BIR)]. In humans, current

evidence points to ATR, ATM, and DNA-PKcs playing an important

role in the regulation of resection, although much less is understood

compared with yeast. In both yeast and humans, phosphatases are

expected to play a key role in counter-balancing the phosphoryla-

tion events that impose the early resection block and influence the

DNA repair process. The balance between DNA damage signaling

kinases and the phosphatases that oppose them is better appreciated

for the more canonical aspects of the checkpoint, but more work is

needed to understand how this balance affects choices made during

the DNA repair process.

In sum, apical kinases perform highly elaborate actions in the

spatiotemporal control of checkpoint responses and DNA repair.

Since checkpoint functions and early resection blockades can coun-

teract HR-mediated DNA repair mechanisms, the ability of cells to

modulate DNA damage signaling is essential for repair pathway

control, and, in particular, proper execution of HR-mediated repair.

More work is needed to better understand how DNA damage signal-

ing kinases monitor and control subsequent steps in HR (including

strand invasion, homology search, and resolution/dissolution), as

well as how such regulation ensures the fidelity of HR and prevents

the erroneous recombination that can give rise to genetic instability.

What’s next? Toward a holistic view of the DNA damage
signaling network

In budding yeast and humans, DNA damage signaling kinases target

dozens, if not hundreds, of DNA repair proteins, thereby modulating

repair pathways. As described above, our understanding of the

mechanisms by which these kinases coordinate DNA repair

machineries is incomplete. When considering a function associated

with the action of a kinase, the gold standard is to demonstrate that

the function is impaired by mutation of a discrete set of phosphory-

latable residues within a substrate protein(s). In almost all the cases

discussed above, the DNA repair-related phenotypes associated with

the disruption of kinase function are far stronger than the pheno-

types associated with the introduction of phosphosite mutations on

the kinase substrates. Thus, either the proper combination of phos-

phosite mutations has not yet been uncovered, or there are still

many more undiscovered phosphorylation events mediated by the

DNA damage signaling kinases that are critical for the control of

DNA repair. In some cases, fundamental phenotypes associated with

12 of 21 The EMBO Journal 38: e101801 | 2019 ª 2019 The Authors

The EMBO Journal Michael Charles Lanz et al



the loss of DNA damage signaling still lack defined substrates and

underlying molecular mechanisms. For example, a mechanistic

understanding of the genetic instability (mostly monitored as accu-

mulation of GCR) observed upon loss of Mec1 and Tel1 is unknown

and represents a significant gap in our understanding of DNA

damage signaling in budding yeast. In humans, the lethality and

chromosomal fragmentation observed upon inhibition of ATR also

lack a clear mechanistic underpinning. Furthermore, while it is

established that inhibition of ATM and DNA-PKcs strongly impair

NHEJ, it is unclear which phosphorylation events are disrupted

upon inhibition and in what ways they are necessary for NHEJ.

Mass spectrometry as a tool to study DNA damage signaling kinases:
strengths, weaknesses, and future directions
Mass spectrometry has been instrumental for discovering in vivo

substrates of the DNA damage signaling kinases (Matsuoka et al,

2007; Smolka et al, 2007; Bastos de Oliveira et al, 2015; Wagner

et al, 2016; Lanz et al, 2018). The ability to quantitatively assess

the phosphoproteome of an organism opened the door for unbi-

ased identification of kinase substrates. Phosphoproteomic screens,

performed in budding yeast and humans, have identified hundreds

of phosphorylation events catalyzed by the DNA damage signaling

kinases. Reassuringly, many of these phosphorylation events map

to previously known substrate proteins. Excitingly, most of these

events occur in substrate proteins not yet studied, many of which

are associated with a broad range of nuclear processes, including

DNA repair. However, the scope of the DNA damage signaling

network revealed by phosphoproteomics raises the question of

how many phosphorylation events have tangible biological signifi-

cance. The ability to distinguish functional phosphorylation from

kinase promiscuity represents the primary challenge of large-scale

phosphoproteomic datasets. For such an inquiry, it is imperative

to generate mutant strains that either lack or constitutively mimic

the phosphorylated residues in the substrate protein, with the ulti-

mate goal to phenocopy the effects of the kinase’s action or inac-

tion. However, this is equivalent to finding a needle in a haystack,

and better strategies are needed to enhance our ability to effi-

ciently and systematically predict functional sites and, when

necessary, to dissect functional redundancy and combinatorial

effects.

Identification of in vivo kinase substrates using mass spectrome-

try is often performed using quantitative MS-based approaches,

primary SILAC, which provide a highly quantitative comparison

between the phosphoproteomic profiles of two different cell popula-

tions (Bastos de Oliveira et al, 2015, 2018). Budding yeast repre-

sents an ideal system for mapping DNA damage signaling using

mass spectrometry due to its relative simplicity compared with the

mammalian system. A range of genetic tools and mutants enable

powerful genetic–proteomic strategies to deconstruct the action of

apical and downstream kinases. For example, loss of Mec1/ATR

results in lethality in most eukaryotic systems, but suppressor muta-

tions that rescue the lethality of mec1D cells (such as SML1 deletion)

are available in yeast and are vital for the identification of proteins

containing Mec1/Tel1- and Rad53-dependent phosphorylation using

phosphoproteomics (Smolka et al, 2007; Bastos de Oliveira et al,

2015; Lanz et al, 2018).

Phosphoproteomics has also been used to identify targets of the

DNA damage signaling kinases in mammalian cell lines (Matsuoka

et al, 2007; Stokes et al, 2007; Bennetzen et al, 2010; Pines et al,

2011; Beli et al, 2012; Kirkpatrick et al, 2013; Wagner et al, 2016).

The sheer complexity of the human phosphoproteome makes in-

depth phosphoproteomic analyses more challenging than in yeast.

Nonetheless, phosphoproteomic studies, such as the 2007 landmark

paper by the Elledge group (Matsuoka et al, 2007), have revealed

hundreds of potential substrates of DNA damage signaling kinases.

One limitation of this work is that it relied on the use of phospho-

specific antibodies for the SQ/TQ phosphosite motif, so it did not

identify substrates of the downstream DDC kinases CHK1 and

CHK2, nor did it identify potentially direct ATR or ATM substrates

phosphorylated at non-canonical motifs (non-SQ/TQ). Unlike in

yeast, matching a substrate to a specific DNA damage signaling

kinase is still a challenge, although the recent development of speci-

fic chemical inhibitors of ATR, ATM, and CHK1 has allowed more

efficient assignment of kinase dependency. In fact, recent studies

have made use of these chemical inhibitors to find ATR-, ATM-, and

CHK1-dependent phosphorylation events in vivo (Blasius et al,

2011; Wagner et al, 2016). Of note, the substrates of DNA-PKcs, a

third, human-specific PI3 kinase-like kinase, have yet to be exten-

sively profiled by MS, although low-throughput studies have uncov-

ered substrate proteins associated with NHEJ (DNA-PKcs is

reviewed in detail here: Blackford & Jackson, 2017).

An alternative approach to screening for substrates of a kinase-

of-interest involves the mutation of gate-keeping residues in the

kinase’s ATP-binding pocket, which enables the accommodation

and subsequent utilization of bulky ATP analogs (Hertz et al,

2010). The addition of an analog-compatible kinase to human cell

extracts results in the in vitro modification of its substrate

proteins, which are then isolated and identified based on the cova-

lent attachment of analog phosphate groups. This chemical-

genetics approach (commonly referred to as the “Shokat method”)

has been used to map the signaling network of several CDKs

(Blethrow et al, 2008; Chi et al, 2008) and, more recently, to iden-

tify CHK1 substrate proteins in human cell extracts (Blasius et al,

2011). However, these chemical-genetic strategies require the

generation of mutant kinase alleles that are able to utilize bulky

ATP analogs, and the kinase labeling reactions normally take place

in cell lysates rather than in vivo. Also, efforts to apply the Shokat

method to the upstream PIKKs have thus far been unsuccessful, as

ATM and ATR appear to be less amenable to mutations in their

ATP-binding pockets.

Overall, phosphoproteomic studies have revealed that the human

DNA damage signaling network is extensive, consisting of many

nuclear proteins, but also non-nuclear proteins. In addition to the

established DNA repair-related substrates previously described in

low-throughput studies, phosphoproteomic analyses have uncov-

ered a large proportion of substrates involved in transcription and

RNA processing, although, like in yeast, the functional significance

of these phosphorylation events remains unclear. While the work

done thus far in mammalian systems has yielded many candidate

substrates, the DNA damage signaling kinases may operate dif-

ferently in different cell types. Thus, it will be important for future

investigations to thoroughly assess how the DNA damage signaling

network varies in different cell types and pathological statuses.

Attaining full coverage of the phosphoproteome is also a concern,

as available phosphoproteome datasets do not cover all phosphory-

lation events in a cell due to technical limitations with mass
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spectrometry (Engholm-Keller & Larsen, 2013). Currently, however,

instruments have become more sensitive, and the ability to use

mass spectrometry to cover the full phosphoproteome may become

a reality in the near future. Looking ahead, it will be crucial to

develop more efficient approaches for identifying functional phos-

phorylation events within the large phosphoproteomic datasets. One

possibility is to use structural prediction analysis to identify phos-

phorylation events that are likely to impair protein function (such as

disrupting protein–protein or protein–DNA interactions) (preprint:

Lanz et al, 2019). In conclusion, a holistic understanding of the role

and action of DNA damage signaling kinases will require powerful

technologies capable of quantitatively monitoring the full extent of

the phosphoproteome in combination with systematic approaches

for functional and mechanistic analyses.
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